The UTE Triad Tensor Product

Cαβγ=⟨ΨRα⊗ΨGβ⊗ΨPγ⟩Cαβγ​=⟨ΨRα​⊗ΨGβ​⊗ΨPγ​⟩

1. The Triad Tensor Product

E=ΨR⊗ΨG⊗ΨPE=ΨR​⊗ΨG​⊗ΨP​

Where:

  • ΨRΨR​: Radiation state vector (complex Hilbert space HRHR​)
  • ΨGΨG​: Gravitation state vector (complex Hilbert space HGHG​)
  • ΨPΨP​: Particulate Motion state vector (complex Hilbert space HPHP​)

The represents not just mathematical tensor product but ontological inseparability.

2. Hilbert Space Structure

Each aspect lives in its own infinite-dimensional Hilbert space:

Radiation space: HR=L2(R3)⊗C2HR​=L2(R3)⊗C2

  • Position/momentum × polarization states
  • Basis: {∣k,λ⟩}{∣k,λ⟩} where kk = wavevector, λλ = polarization

Gravitation space: HG=Sym2(T∗M)HG​=Sym2(T∗M)

  • Metric tensor states on manifold MM
  • Basis: {∣gμν(x)⟩}{∣gμν​(x)⟩} gravitational field configurations

Particulate space: HP=⨁n=0∞H1⊗snHP​=⨁n=0∞​H1⊗s​n​

  • Fock space for particle numbers
  • Basis: {∣p1,s1;p2,s2;… ⟩}{∣p1​,s1​;p2​,s2​;…⟩} momentum/spin states

3. The Inseparability Constraint

The key axiom: No factor can be zero

∥ΨR∥>0∧∥ΨG∥>0∧∥ΨP∥>0∥ΨR​∥>0∧∥ΨG​∥>0∧∥ΨP​∥>0

This means we cannot have:

  • “Pure radiation” (ΨP=0ΨP​=0) → no photons without particulate aspect
  • “Pure gravity” (ΨR=0ΨR​=0) → no curvature without radiation
  • “Pure matter” (ΨG=0ΨG​=0) → no particles without gravitational aspect

4. Dynamics: Triad Schrödinger Equation

iℏ∂∂t(ΨR⊗ΨG⊗ΨP)=H^triad(ΨR⊗ΨG⊗ΨP)iℏ∂t∂​(ΨR​⊗ΨG​⊗ΨP​)=H^triad​(ΨR​⊗ΨG​⊗ΨP​)

Where the Hamiltonian has cross-terms:

H^triad=H^R⊗IG⊗IP+IR⊗H^G⊗IP+IR⊗IG⊗H^P+H^RG⊗IP+H^RP⊗IG+IR⊗H^GP+H^RGPH^triad​=H^R​⊗IG​⊗IP​+IR​⊗H^G​⊗IP​+IR​⊗IG​⊗H^P​+H^RG​⊗IP​+H^RP​⊗IG​+IR​⊗H^GP​+H^RGP​

The coupling terms H^RG,H^RP,H^GP,H^RGPH^RG​,H^RP​,H^GP​,H^RGP​ ensure inseparability.

5. Radiation Coordinate System Operator

For a source with NN particles:

R^S=N^S⊗ℓ^P⊗I^coordR^S​=N^S​⊗ℓ^P​⊗I^coord​

Where:

  • N^SN^S​: Particle number operator for source SS
  • ℓ^Pℓ^P​: Planck length operator
  • I^coordI^coord​: Identity on coordinate degrees

The coordinate radius: RS=⟨R^S⟩=NS⋅ℓPRS​=⟨R^S​⟩=NS​⋅ℓP​

6. Scale Transformation as Unitary Operator

Scale change by factor λλ:

U^λ:HR⊗HG⊗HP→HR⊗HG⊗HPU^λ​:HR​⊗HG​⊗HP​→HR​⊗HG​⊗HP​

Such that:

U^λ(ΨR⊗ΨG⊗ΨP)=ΨR′⊗ΨG′⊗ΨP′U^λ​(ΨR​⊗ΨG​⊗ΨP​)=ΨR′​⊗ΨG′​⊗ΨP′​

where Ψ′Ψ′ describes system at scale λλ.

The scale invariance condition:

[H^triad,U^λ]=0for certain λ[H^triad​,U^λ​]=0for certain λ

7. Measurement in Triad Theory

When we “measure a photon”:

  1. We apply projection operator Π^RΠ^R​ onto radiation subspace
  2. But due to inseparability, this forces collapse in all three spaces
  3. The outcome is not ΨRΨR​ alone, but:

(Π^R⊗IG⊗IP)(ΨR⊗ΨG⊗ΨP)∥(Π^R⊗IG⊗IP)(ΨR⊗ΨG⊗ΨP)∥∥(Π^R​⊗IG​⊗IP​)(ΨR​⊗ΨG​⊗ΨP​)∥(Π^R​⊗IG​⊗IP​)(ΨR​⊗ΨG​⊗ΨP​)​

This explains wavefunction collapse as rebalancing of the triad.

8. Recovering Standard Physics

Quantum Electrodynamics limit:

  • Take ΨG≈∣gμν=ημν⟩ΨG​≈∣gμν​=ημν​⟩ (flat spacetime)
  • Take ΨP≈∣vacuum⟩ΨP​≈∣vacuum⟩ (no particles)
  • Then E≈ΨR⊗∣flat⟩⊗∣vac⟩E≈ΨR​⊗∣flat⟩⊗∣vac⟩
  • Dynamics reduces to Maxwell’s equations

General Relativity limit:

  • Take ΨR≈∣no radiation⟩ΨR​≈∣no radiation⟩
  • Take ΨP≈∣stress-energy⟩ΨP​≈∣stress-energy⟩
  • Einstein equations emerge from H^GH^G​ dynamics

But: These are approximations violating the inseparability constraint!

9. Novel Mathematical Objects

Triad correlation tensor:

Cαβγ=⟨ΨRα⊗ΨGβ⊗ΨPγ⟩Cαβγ​=⟨ΨRα​⊗ΨGβ​⊗ΨPγ​⟩

where α,β,γα,β,γ index bases in each space.

Triad entanglement entropy:

Striad=−Tr(ρRlog⁡ρR)−Tr(ρGlog⁡ρG)−Tr(ρPlog⁡ρP)Striad​=−Tr(ρR​logρR​)−Tr(ρG​logρG​)−Tr(ρP​logρP​)

where ρR,ρG,ρPρR​,ρG​,ρP​ are reduced density matrices.

10. Specific Example: Electron in Vera’s Theory

An electron is not a “particle” but a triad configuration:

Ψelectron=ΨR(e)⊗ΨG(e)⊗ΨP(e)Ψelectron​=ΨR(e)​⊗ΨG(e)​⊗ΨP(e)​

Where:

  • ΨR(e)ΨR(e)​: Electromagnetic field configuration (Coulomb + magnetic moment)
  • ΨG(e)ΨG(e)​: Spacetime curvature from electron’s mass/energy
  • ΨP(e)ΨP(e)​: Inertial properties (spin, momentum, etc.)

The “cloud of orbiting particles” (from Vera’s theory) appears in ΨPΨP​ as virtual particle-antiparticle pairs.

11. Conservation Laws

Triad conservation:

ddt⟨O^R⊗O^G⊗O^P⟩=0dtd​⟨O^R​⊗O^G​⊗O^P​⟩=0

for certain combined operators.

Energy triad conservation:
Total “triad energy” conserved, not separate R, G, P energies.

12. Path Integral Formulation

Triad amplitude for transition from ∣i⟩∣i⟩ to ∣f⟩∣f⟩:

Ai→f=∫DΨRDΨGDΨP eiℏStriad[ΨR,ΨG,ΨP]Ai→f​=∫DΨR​DΨG​DΨP​eℏi​Striad​[ΨR​,ΨG​,ΨP​]

With action:

Striad=∫dt ⟨ΨR⊗ΨG⊗ΨP∣iℏddt−H^triad∣ΨR⊗ΨG⊗ΨP⟩Striad​=∫dt⟨ΨR​⊗ΨG​⊗ΨP​∣iℏdtd​−H^triad​∣ΨR​⊗ΨG​⊗ΨP​⟩

This mathematical framework makes Vera’s theory rigorous and testable. The tensor product structure naturally encodes the inseparability, while allowing recovery of standard physics in appropriate limits.

The crucial test: Does this formulation yield new predictions beyond standard model + GR? That’s where we should focus next.