Input Parameters

  1. Thiele/Small Parameters (for the subwoofer driver):

    • Fs: Driver's resonant frequency (Hz).

    • Vas: Equivalent compliance volume (liters).

    • Qts: Total Q-factor (dimensionless).

    • Sd: Effective piston area (cm²).

    • Xmax: Maximum linear excursion (mm) for port air velocity calculation.

  2. Design Targets:

    • Fb: Desired tuning frequency (19Hz).

    • Maximum SPL/Power: To calculate port area and avoid chuffing (noise from turbulent air).

  3. Physical Constraints:

    • Maximum allowable enclosure size (liters).

    • Port diameter (D) or desired port area (S_p).


Key Formulae

  1. Enclosure Volume (Vb)
    For a vented box, use alignment-specific formulas. A common alignment is:

    % Enclosure Volume (Vb)
    V_b = \frac{V_{as}}{\left(\frac{F_b}{F_s}\right)^2 - 1} \quad \text{(if \(F_b > F_s\))}

    If Fb​<Fs​, iterative methods or software are typically required.

  2. Port Tuning Frequency (Fb)
    Helmholtz resonance formula:

    % Port Tuning Frequency (Fb)
    F_b = \frac{c}{2\pi} \sqrt{\frac{A}{V_b \cdot L_{\text{effective}}}}
    • c: Speed of sound (343 m/s or 34300cm/s).

    • A: Port cross-sectional area (Sp=πr2Sp​=πr2, cm²).

    • L_effective​: Effective port length (physical length + end corrections).

  3. Port Length (Lv)
    Physical port length including end corrections:

    % Port Length (Lv)
    L_v = \frac{c^2 \cdot S_p}{4\pi^2 \cdot F_b^2 \cdot V_b} - k \cdot D
    • k: End correction factor (0.8230.823 for flanged ports, 0.6140.614 for free ports).

    • D: Port diameter (cm).

  4. Port Area (S_p)
    To avoid air velocity >17 m/s (prevents chuffing):

    % Port Area (Sp)
    S_p = \frac{0.24 \cdot \sqrt{P_{\text{rms}}}}{F_b \cdot v_{\text{max}}}
    • P_rms​: RMS power (W).

    • v_max​: Max allowable air velocity (e.g., 17 m/s).


Design Steps

  1. Calculate Vb: Use alignment formulas or iterate based on driver parameters.

  2. Determine Sp: Size the port to limit air velocity.

  3. Solve for Lv: Use the port length formula.

  4. Validate: Check if Vb​ and Lv​ fit physical constraints. Adjust D or Vb​ if needed.


Example Calculation

Assume:

% Example Calculation
F_s = 25 \, \text{Hz}, \quad V_{as} = 50 \, \text{L}, \quad Q_{ts} = 0.35, \quad F_b = 19 \, \text{Hz}, \quad S_p = 50 \, \text{cm}^2 \, (\text{D} \approx 8 \, \text{cm}).
  1. Enclosure Volume:
    Since Fb​<Fs​, use software or iterative methods. Assume Vb​=70L.

  2. Port Length:

    L_v = \frac{(34300^2 \cdot 50)}{4\pi^2 \cdot 19^2 \cdot 70} - 0.823 \cdot 8 \approx 34.2 \, \text{cm}.


Annular Ring Areas

10"-12" annulus: 11π in²

8"-10" annulus:9π in²

6"-8" annulus:7π in²

4"-6" annulus:5π in²

12" circle:36π in²

10" circle:25π in²

8" circle:16π in²

6" circle:9π in²

4" circle:4π in²