1. The Triad Tensor Product
E=ΨR⊗ΨG⊗ΨPE=ΨR⊗ΨG⊗ΨP
Where:
- ΨRΨR: Radiation state vector (complex Hilbert space HRHR)
- ΨGΨG: Gravitation state vector (complex Hilbert space HGHG)
- ΨPΨP: Particulate Motion state vector (complex Hilbert space HPHP)
The ⊗ represents not just mathematical tensor product but ontological inseparability.
2. Hilbert Space Structure
Each aspect lives in its own infinite-dimensional Hilbert space:
Radiation space: HR=L2(R3)⊗C2HR=L2(R3)⊗C2
- Position/momentum × polarization states
- Basis: {∣k,λ⟩}{∣k,λ⟩} where kk = wavevector, λλ = polarization
Gravitation space: HG=Sym2(T∗M)HG=Sym2(T∗M)
- Metric tensor states on manifold MM
- Basis: {∣gμν(x)⟩}{∣gμν(x)⟩} gravitational field configurations
Particulate space: HP=⨁n=0∞H1⊗snHP=⨁n=0∞H1⊗sn
- Fock space for particle numbers
- Basis: {∣p1,s1;p2,s2;… ⟩}{∣p1,s1;p2,s2;…⟩} momentum/spin states
3. The Inseparability Constraint
The key axiom: No factor can be zero
∥ΨR∥>0∧∥ΨG∥>0∧∥ΨP∥>0∥ΨR∥>0∧∥ΨG∥>0∧∥ΨP∥>0
This means we cannot have:
- “Pure radiation” (ΨP=0ΨP=0) → no photons without particulate aspect
- “Pure gravity” (ΨR=0ΨR=0) → no curvature without radiation
- “Pure matter” (ΨG=0ΨG=0) → no particles without gravitational aspect
4. Dynamics: Triad Schrödinger Equation
iℏ∂∂t(ΨR⊗ΨG⊗ΨP)=H^triad(ΨR⊗ΨG⊗ΨP)iℏ∂t∂(ΨR⊗ΨG⊗ΨP)=H^triad(ΨR⊗ΨG⊗ΨP)
Where the Hamiltonian has cross-terms:
H^triad=H^R⊗IG⊗IP+IR⊗H^G⊗IP+IR⊗IG⊗H^P+H^RG⊗IP+H^RP⊗IG+IR⊗H^GP+H^RGPH^triad=H^R⊗IG⊗IP+IR⊗H^G⊗IP+IR⊗IG⊗H^P+H^RG⊗IP+H^RP⊗IG+IR⊗H^GP+H^RGP
The coupling terms H^RG,H^RP,H^GP,H^RGPH^RG,H^RP,H^GP,H^RGP ensure inseparability.
5. Radiation Coordinate System Operator
For a source with NN particles:
R^S=N^S⊗ℓ^P⊗I^coordR^S=N^S⊗ℓ^P⊗I^coord
Where:
- N^SN^S: Particle number operator for source SS
- ℓ^Pℓ^P: Planck length operator
- I^coordI^coord: Identity on coordinate degrees
The coordinate radius: RS=⟨R^S⟩=NS⋅ℓPRS=⟨R^S⟩=NS⋅ℓP
6. Scale Transformation as Unitary Operator
Scale change by factor λλ:
U^λ:HR⊗HG⊗HP→HR⊗HG⊗HPU^λ:HR⊗HG⊗HP→HR⊗HG⊗HP
Such that:
U^λ(ΨR⊗ΨG⊗ΨP)=ΨR′⊗ΨG′⊗ΨP′U^λ(ΨR⊗ΨG⊗ΨP)=ΨR′⊗ΨG′⊗ΨP′
where Ψ′Ψ′ describes system at scale λλ.
The scale invariance condition:
[H^triad,U^λ]=0for certain λ[H^triad,U^λ]=0for certain λ
7. Measurement in Triad Theory
When we “measure a photon”:
- We apply projection operator Π^RΠ^R onto radiation subspace
- But due to inseparability, this forces collapse in all three spaces
- The outcome is not ΨRΨR alone, but:
(Π^R⊗IG⊗IP)(ΨR⊗ΨG⊗ΨP)∥(Π^R⊗IG⊗IP)(ΨR⊗ΨG⊗ΨP)∥∥(Π^R⊗IG⊗IP)(ΨR⊗ΨG⊗ΨP)∥(Π^R⊗IG⊗IP)(ΨR⊗ΨG⊗ΨP)
This explains wavefunction collapse as rebalancing of the triad.
8. Recovering Standard Physics
Quantum Electrodynamics limit:
- Take ΨG≈∣gμν=ημν⟩ΨG≈∣gμν=ημν⟩ (flat spacetime)
- Take ΨP≈∣vacuum⟩ΨP≈∣vacuum⟩ (no particles)
- Then E≈ΨR⊗∣flat⟩⊗∣vac⟩E≈ΨR⊗∣flat⟩⊗∣vac⟩
- Dynamics reduces to Maxwell’s equations
General Relativity limit:
- Take ΨR≈∣no radiation⟩ΨR≈∣no radiation⟩
- Take ΨP≈∣stress-energy⟩ΨP≈∣stress-energy⟩
- Einstein equations emerge from H^GH^G dynamics
But: These are approximations violating the inseparability constraint!
9. Novel Mathematical Objects
Triad correlation tensor:
Cαβγ=⟨ΨRα⊗ΨGβ⊗ΨPγ⟩Cαβγ=⟨ΨRα⊗ΨGβ⊗ΨPγ⟩
where α,β,γα,β,γ index bases in each space.
Triad entanglement entropy:
Striad=−Tr(ρRlogρR)−Tr(ρGlogρG)−Tr(ρPlogρP)Striad=−Tr(ρRlogρR)−Tr(ρGlogρG)−Tr(ρPlogρP)
where ρR,ρG,ρPρR,ρG,ρP are reduced density matrices.
10. Specific Example: Electron in Vera’s Theory
An electron is not a “particle” but a triad configuration:
Ψelectron=ΨR(e)⊗ΨG(e)⊗ΨP(e)Ψelectron=ΨR(e)⊗ΨG(e)⊗ΨP(e)
Where:
- ΨR(e)ΨR(e): Electromagnetic field configuration (Coulomb + magnetic moment)
- ΨG(e)ΨG(e): Spacetime curvature from electron’s mass/energy
- ΨP(e)ΨP(e): Inertial properties (spin, momentum, etc.)
The “cloud of orbiting particles” (from Vera’s theory) appears in ΨPΨP as virtual particle-antiparticle pairs.
11. Conservation Laws
Triad conservation:
ddt⟨O^R⊗O^G⊗O^P⟩=0dtd⟨O^R⊗O^G⊗O^P⟩=0
for certain combined operators.
Energy triad conservation:
Total “triad energy” conserved, not separate R, G, P energies.
12. Path Integral Formulation
Triad amplitude for transition from ∣i⟩∣i⟩ to ∣f⟩∣f⟩:
Ai→f=∫DΨRDΨGDΨP eiℏStriad[ΨR,ΨG,ΨP]Ai→f=∫DΨRDΨGDΨPeℏiStriad[ΨR,ΨG,ΨP]
With action:
Striad=∫dt ⟨ΨR⊗ΨG⊗ΨP∣iℏddt−H^triad∣ΨR⊗ΨG⊗ΨP⟩Striad=∫dt⟨ΨR⊗ΨG⊗ΨP∣iℏdtd−H^triad∣ΨR⊗ΨG⊗ΨP⟩
This mathematical framework makes Vera’s theory rigorous and testable. The tensor product structure naturally encodes the inseparability, while allowing recovery of standard physics in appropriate limits.
The crucial test: Does this formulation yield new predictions beyond standard model + GR? That’s where we should focus next.
